Магниторезонансный источник энергии. Опасны ли новые технологии

4

1 ФГБОУ ВПО «Новгородский государственный университет имени Ярослава Мудрого», Великий Новгород

2 ФГБОУ ВПО «Новгородский государственный университет имени Ярослава Мудрого»

3 Московский государственный университет им. М.В. Ломоносова, Москва

4 Институт общей физики им. А.М. Прохорова РАН

В статье приводится экспериментальное свидетельство наличия магнитоэлектрического (МЭ) взаимодействия в области магнитоакустического резонанса (МАР) в искусственной среде феррит-пьезоэлектрик. В материалах такого рода МЭ эффект проявляется как следствие взаимодействия магнитострикционных и пьезоэлектрических компонентов. Целью данной работы являлось экспериментальное исследование МЭ эффекта в области МАР феррита. МЭ элемент был изготовлен из двух монокристаллических материалов: пьезоэлектрика  лантангаллиевого силиката и феррита  иттрий-железистого граната. В работе приведены экспериментальные данные по изучению прямого МЭ эффекта для двухфазного образца ИЖГ-ЛГС в области МАР. Величина эффекта составила 14,1 В/(смЭ) на частоте около 2,8 МГц. Измерения проведены двумя методами, имеющими сопоставимые результаты. Полученные данные позволяют спрогнозировать возможность технической реализуемости приборов радио и СВЧ диапазона с использованием МЭ эффекта в области МАР с удовлетворительными параметрами.

магнитоэлектрический эффект

магнитоакустический резонанс

1. Беляева О. Ю., Зарембо Л. К., Карпачев С. Н. Магнитоакустика ферритов и магнитоакустический резонанс // УФН 162 (2) 107–138 (1992).

2. Бичурин М. И. и др. Магнитоэлектрические материалы. – М.: Академия естествознания, 2006. – 296 с.

3. Гуляев Ю. В., Дикштейн И. Е., Шавров В. Г. Поверхностные магнитоакустические волны в магнитных кристаллах в области ориентационных фазовых переходов // УФН 167 735–750 (1997).

4. Бичурин М. И., Петров В. М.. Магнитоэлектрический эффект в магнитострикционно-пьезоэлектрических мультиферроиках // Физика низких температур. – 15/06/2010. – T. 36, N 6. – С. 680-687.

5. Петров В. М., Бичурин М. И., Петров Р. В. Магнитоакустический резонанс в феррит-пьезоэлектрических плёночных структурах // Современные проблемы науки и образования. – 2012. – № 2; URL: www.сайт/102-5701

6. Петров Р. В., Бичурин М. И., Петров В. М. Резонансные эффекты в магнитострикционно-пьезоэлектрических композитах для твердотельных электронных устройств // Palmarium Academic Publishing, 2012. – 264 с.

7. Пятаков А. П., Звездин А. К. Магнитоэлектрические материалы и мультиферроики // УФН 182 593–620 (2012).

8. Bichurin M. I., Petriv V. M., and Priya S. Magnetoelectric Multiferroic Composites // In: Ferroelectrics - Physical Effects/ Ed. Mickaël Lallart. – InTech, 2011. – P. 277-302.

9. Bichurin M. I., Petrov V. M., Ryabkov O. V. et al. Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures // Phys. Rev. B, 2005, v. 72, P. 060408(R) (1-4).

10. Magnetoelectricity in Composites / Eds. M. I. Bichurin and D. Viehland, Pan Stanford Pub, 2011. – 257 p.

Введение

На стыке хорошо известных и изученных явлений часто можно наблюдать совершенно новые проявления внутренних свойств веществ, дающих начало передовым исследованиям и служащих источником научного и технического прогресса. В статье приводится экспериментальное свидетельство наличия магнитоэлектрического (МЭ) взаимодействия в области магнитоакустического резонанса в искусственной среде феррит-пьезоэлектрик. В материалах такого рода МЭ эффект проявляется как следствие взаимодействия магнитострикционных и пьезоэлектрических компонентов. Упругое механическое взаимодействие между магнитострикционной и пьезоэлектрической фазами дает гигантский магнитоэлектрический отклик в магнитоэлектрических композиционных материалах . Взаимодействие между магнитной (спиновой) и упругой подсистемами приводит к возникновению в магнетике связанных магнитоупругих колебаний, обладающих интересными физическими свойствами . Магнитоакустический резонанс (MAP) проявляется в резком увеличении поглощения акустической волны по достижении резонансных условий со спиновой (при совпадении их частот и волновых векторов). Здесь, в отличие от большинства случаев релаксационных явлений в акустике, представляются возможности управления характеристиками (временем релаксации и т.д.) с помощью внешних магнитных полей . Целью данной работы является экспериментальное исследование МЭ эффекта в области МАР феррита. Исследование этого явления позволит в дальнейшем создать ряд высокочастотных устройств, например, фильтр, вентиль, фазовращатель и пр., характеристиками которых можно управлять, меняя величину электрического поля.

Экспериментальный образец и измерительный стенд

МЭ элемент был изготовлен из двух монокристаллических материалов. Первый материал - пьезоэлектрический лантангаллиевый силикат La3Ga5SiO14 (лангасит — ЛГС) Y-среза с размерами 15х4х0,5 мм был предоставлен компанией ОАО «Фомос-Материалс», Россия (http://www.newpiezo.com). Второй материал - монокристаллический иттрий-железистый гранат (ИЖГ) представлял собой также пластину с размерами 13х4х1,35 мм, ориентированную в плоскости (110), и был предоставлен фирмой НИИ «Феррит-Домен», Россия (http://www.ferrite-domen.com). Оба образца были отполированы до зеркальной поверхности. На плоскости ЛГС были нанесены золотые электроды толщиной 0,5 мкм. МЭ элемент был изготовлен методом склеивания двух компонентов, пьезоэлектрика и феррита, с помощью поливинилбутираль-фенолформальдегидного клея. Толщина клеевого соединения составляла не более 12 мкм.

Расположение МЭ элемента в магнитных полях показано на рис. 1.


Рисунок 1. Расположение МЭ элемента во внешних магнитных полях

МЭ элемент располагается в центре катушки Гельмгольца. Постоянное магнитное поле направлено вдоль плоскости магнитоэлектрического образца в первом случае и поперёк плоскости магнитоэлектрического образца во-втором. Переменное электромагнитное поле всегда было направлено вдоль плоскости магнитоэлектрического образца. В подобных условиях в феррите возбуждаются толщинно-сдвиговые волны. Резонансная характеристика S11 коэффициента отражения в отдельном образце ИЖГ до склеивания представлена на рис. 2а. В свою очередь эти волны возбуждают толщинно-сдвиговые волны в ЛГС - пьезоэлектрике Y-среза. Резонансная характеристика S11 коэффициента отражения в отдельном образце ЛГС представлена на рис. 2б. Экспериментальные резонансные частоты для обоих образцов совпадают с расчётными. Волны генерируют сигнал на плоскостных электродах пьезоэлектрика. Величина постоянного магнитного поля в случае продольного намагничивания 164 Э и в случае поперечного - 597 Э. Величина переменного магнитного поля 150 млЭ. Сигнал снимался с электродов, расположенных на плоскостях пьезоэлектрика.

Рисунок 2. Резонансная характеристика S11 коэффициента отражения в отдельном образце: а - ИЖГ, б - ЛГС

Резонансная частота магнитоупругих колебаний в пластине ИЖГ после склеивания сдвигается вверх, что объясняется эффектом смещения линии ФМР под действием механического напряжения. После склеивания МЭ элемента обе резонансные характеристики совпадают по частоте.

Для измерений использовались два стенда. Для проведения панорамных измерений был использован стенд, изображённый на рис. 3а, включающий в себя МЭ образец, помещённый в катушку Гельмгольца, подключённую к измерителю комплексных коэффициентов передачи «Обзор-304», электромагнит, источник питания, гауссметр. Мощность сигнала на выходе измерителя была 10 млВт. На установке проводились измерения коэффициентов отражения S11, S22 и коэффициента прохождения S21 на частоте около 2,8 МГц.


Рисунок 3. Измерительный стенд: а - для панорамных измерений, б - на базе осциллографа

Такой стенд позволяет увидеть изменение характеристик в реальном режиме времени. Резонансная характеристика S11 коэффициента отражения от входа в МЭ образце, обусловленная магнитной фазой, представлена на рис. 4а. Резонансная характеристика S22 коэффициента отражения от выхода в МЭ образце, обусловленная пьезоэлектрической фазой, представлена на рис. 4б. Для создания условий, возбуждающих магнитоупругие колебания в МЭ образце, использовали подмагничивающее поле. Результаты при поперечном и продольном подмагничивании существенно не отличались. Передаточная характеристика S21 показана на рис. 5а. Кривая 1 показывает коэф. прохождения без подмагничивающего поля, кривая 2 - с подмагничивающим полем. На частоте магнитоакустического резонанса в феррите, около 2,8 МГц, наблюдается увеличение амплитуды коэффициента прохождения примерно на 15дБ по сравнению с нерезонансным случаем. Такое поведение указывает на то, что основная часть энергии передаётся посредством энергии волн от входа устройства к его выходу. Так как в структурах возможно возбуждение лишь толщинно-сдвиговых волн, то это свидетельствует о наличии эффекта МАР в данном частотном диапазоне. Теоретические исследования МАР в связи с магнитоэлектрическими (МЭ) явлениями были проведены в работах , где рассмотрен магнитоэлектрический эффект в двухслойной магнитострикционно-пьезоэлектрической пленочной структуре на диэлектрической подложке в области магнитоакустического резонанса. Экспериментальные данные подтверждают теоретические расчёты.

Рисунок 4. Характеристики коэффициента отражения в МЭ образце: а - S11, б - S22

Рисунок 5. а - передаточная характеристика S21 МЭ образца, б - значение aME МЭ образца на частоте резонанса

Структурная схема второй установки представлена на рис. 3б. В неё входят МЭ образец, подключенный к осциллографу и помещённый в катушку Гельмгольца, подключённую к генератору сигналов, электромагнит, источник питания, гауссметр. На стенде проводились измерения прямого МЭ коэффициента.

Значения МЭ коэффициента aME на частоте магнитоакустического резонанса приведены на рис. 5б. На частоте около 2,8 МГц он составил около 14,1 В/(см×Э).

Сравнивая данные, приведённые на рис. 5а и рис. 5б, очевидно, что они полностью идентичны и два метода измерений полностью сопоставимы по результатам.

В результате проведённых исследований получены удовлетворительные результаты по величине МЭ эффекта. Это первые измерения МЭ эффекта, проведённые в радиочастотном диапазоне и имеющие столь значительную его величину. Теоретические предпосылки, приведённые в ранее опубликованных работах, полностью подтверждены. В дальнейшем будут опубликованы точные расчёты в сопоставлении с экспериментальными данными. Предполагается провести расчёты спектров магнитоакустических и упругих колебаний, оценить величины взаимодействия колебаний при разных условиях возбуждения.

Заключение

В работе приведены экспериментальные данные по изучению МЭ эффекта для двухфазного образца ИЖГ-ЛГС в области МАР. Величина эффекта составила 14,1 В/(см×Э) на частоте около 2,8 МГц. Измерения проведены двумя методами, имеющими сопоставимые результаты. Полученные данные позволяют спрогнозировать возможность технической реализуемости приборов радио и СВЧ диапазона с использованием МЭ эффекта в области МАР.

Работа выполнена в рамках реализации федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы.

Рецензенты:

Захаров Анатолий Юльевич, д.ф.-м.н., профессор, заведующий секцией кафедры общей и экспериментальной физики ИЭИС НовГУ, г.Великий Новгород.

Селезнёв Борис Иванович, д.т.н., профессор, директор ИЭИС НовГУ, г.Великий Новгород.

Библиографическая ссылка

Петров Р.В., Петров В.М., Татаренко А.С., Бичурин М.И., Пятаков А.П., Звездин А.К. МАГНИТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ В ОБЛАСТИ МАГНИТОАКУСТИЧЕСКОГО РЕЗОНАНСА В СТРУКТУРЕ ФЕРРИТ-ПЬЕЗОЭЛЕКТРИК // Современные проблемы науки и образования. – 2013. – № 4.;
URL: http://science-education.ru/ru/article/view?id=9654 (дата обращения: 23.08.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

В данной статье узнаем про резонанс — как источник энергии.

В средствах массовой информации с огромным «резонансом» говорят о РЕЗОНАНСЕ – как источнике энергии. Предлагаю разобраться с Вами, что такое электрический резонанс? Далеко ходить не будем, рассмотрим происходящие процессы в классическом LC резонансном контуре. Собственно других резонансных систем в электронике не существует. Прежде стоит отметить: бывают последовательный и параллельный колебательный (резонансный) контур. Процессы в обоих видах контуров протекают одинаково, отличие только в принципах питания.

Наиболее привлекателен, как источник энергии — параллельный колебательный контур, который все известные личности (в том числе Н. Тесла) использовали и используют в своих изобретениях и разработках. На его примере, проще рассматривать протекание тока питания и контурного тока.

Но колебательный контур обладает ещё одним параметром, оказывающим значительное влияние на потери энергии контуром — резистивным сопротивлением R , которое складывается из сопротивлений потерь в конденсаторе и катушке индуктивности, сопротивления выходного транзисторного каскада (в закрытом состоянии), и самое главное — сопротивления цепи нагрузки. Полная схема параллельного колебательного контура с резистивным сопротивлением изображена на рисунке, где C , L и R — суммарные значения ёмкостей, индуктивностей и резистивного сопротивления контура. Вообще, есть понятие – импеданс, но я не буду забивать вам голову этим понятием, а буду объяснять по простому.

Для того, чтобы понять, как C , L и R «работают» совместно, нам необходимо рассмотреть Амплитудно-частотную характеристику контура. Но сделаем мы это не на традиционном графике АЧХ, как упрощённо сделано в статье Колебательный контур. Резонанс . Изображённые ниже формулы и частотная характеристика, объясняют состояние и зависимость реактивных сопротивлений конденсатора X C и катушки индуктивности X L от частоты f .

На графике изображена линия зависимости реактивного сопротивления конденсатора X C от частоты f , которая указывает, что на низких частотах реактивное сопротивление конденсатора максимально, а с повышением частоты уменьшается по экспоненте — конденсатор превращается в «проводник». Линия зависимости реактивного сопротивления катушки индуктивности X L от частоты f , указывает, что катушка индуктивности ведёт себя наоборот, на низких частотах реактивное сопротивление катушки минимально — катушка индуктивности — «проводник», а с повышением частоты увеличивается, но не по экспоненте, а по прямой. Резистивное сопротивление контура R , никак от изменения частоты не зависит. Так как элементы контура соединены параллельно, то и складывать сопротивления конденсатора Х C , катушки индуктивности Х L и резистивное сопротивление контура R мы будем по формуле параллельного соединения резисторов, (подробнее в статье:Резистор).

По результирующему графику суммарного сопротивления резонансного контура мы видим, что имеется определённая частота, на которой значения сопротивления конденсатора Х C и катушки индуктивности Х L одинаковы, это и есть резонансная частота. Этот график фактически (но не совсем) является амплитудно-частотной характеристикой (АЧХ) контура.

Таким образом, можно сделать вывод, что элементы колебательного контура являются нагрузкой для электрического тока, могут поглощать подводимую энергию. Для подъёма АЧХ контура, необходимо увеличить общее сопротивление контура. Это можно сделать путём увеличения его составляющих — сопротивления конденсатора Х C , катушки индуктивности Х L и резистивного сопротивления контура R . Для повышения характеристики АЧХ и для того, чтобы частота не «уходила», необходимо одновременно увеличивая индуктивность катушки, уменьшать ёмкость конденсатора. Это следует из правила, согласно которому, на резонансной частоте величины Х C = Х L . Приведём формулу Томсона, получаемую из выражений зависимости Х C и Х L от частоты и подтверждающую это утверждение:

Из формулы Томсона следует, что на одной и той же частоте может работать множество контуров с разными величинами L и С , но с одинаковым произведением . Если же мы уменьшим сопротивление R , то и общее сопротивление колебательной системы так же снизится, что приведёт к потерям энергии.
Когда мы говорим о возможности получения энергии из колебательного контура, мы говорим об уменьшении сопротивления R , а это по известному закону Ома «не знаешь Ома, сиди дома», или I=U/R приводит к снижению амплитуды резонансных колебаний.

Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период, принято называть добротностью Q . Она то и зависит от вышеописанных физических величин:

Где, же дополнительная энергия резонансного контура? Всё вышеописанное ранее в этой статье, проводилось без учёта главного явления любого электрического резонансного контура – контурного тока.

Контурный ток

В связи с тем, что конденсатор и катушка индуктивности обладают реактивными свойствами, в колебательном контуре протекает контурный ток. Путь протекания этого тока проходит через конденсатор и катушку индуктивности. Направление этого тока меняется два раза за период колебаний. Этот процесс, наглядно изображён на примере простейшего транзисторного каскада на иллюстрации ниже:

Для упрощения, считаем, что транзистор работает без дополнительного смещения базы. Все переходные процессы протекания тока питания и контурного тока происходят в течение одного периода колебания, а в последующих периодах повторяются.

Участок «0» временной характеристики, можно назвать первоначальным, когда процессы заряда и перезаряда ёмкости и индуктивности ещё не «устоялись», так как в начальный момент они разряжены. На этом этапе происходит заряд ёмкости от источника питания через открытый транзистор, при этом ток заряда сначала максимальный, а по окончании 1/4 периода падает до нуля. Ток в катушке индуктивности, обладающей инерционностью минимален. По окончании отрезка «0», контур переходит в резонансный «устоявшийся» режим.

На участке «В» временной характеристики, когда конденсатор заряжен до напряжения источника питания, ток протекающий по пути «источник питания – катушка — открытый транзистор — источник питания» постепенно увеличивается. Когда в результате закрытия транзистора, напряжение на конденсаторе превысит потенциал, прикладываемый от источника тока, конденсатор начинает разряжаться через катушку индуктивности, к концу 1/2 периода разрядившись на неё полностью. Таким образом, в этот промежуток времени «В» через катушку индуктивности течёт два тока – ток источника питания и контурный ток разряда ёмкости.

На участке «С» временной характеристики, когда переход транзистора закрыт, по причине инерционности катушки индуктивности происходит перезаряд конденсатора от катушки индуктивности. Катушка индуктивности полностью разряжается, а конденсатор оказывается заряженным противоположным потенциалом. Ток источника питания в этот момент «С» через элементы контура не течёт.

На участке «D» временной характеристики, когда переход транзистора закрыт, происходит обратный разряд конденсатора на катушку индуктивности. Конденсатор полностью разряжается, а индуктивность наоборот, оказывается заряженной потенциалом противоположным источнику питания. Ток источника питания в этот момент «D» через элементы контура, по-прежнему, не течёт.

На участке «А» временной характеристики, происходит заряд конденсатора от катушки индуктивности, а при разряде катушки до значения меньше напряжения источника питания подаваемого через открытый транзистор, конденсатор заряжается от источника питания. При этом ток заряда конденсатора сначала максимальный, а по окончании периода сигнала падает до нуля. Ток в катушке индуктивности, сначала — максимальный, а в конце временного интервала «А» становится равным нулю. В промежуток времени «А» через конденсатор течёт два тока – ток источника питания и контурный ток разряда ёмкости.

Процесс работы резонансного контура циклически повторяется по схеме: А – В – С – D – А.

Таким образом, в резонансном контуре ровно половину периода гармонического сигнала на участках А и В происходит сложение двух токов – тока источника питания и контурного тока, что в свою очередь с каждым периодом (процесса перезаряда) повышает энергию контура. Повышение энергии резонансного контура происходит только за счёт источника питания. Сколько в резонансный контур попадает энергии, столько энергии и тратится на нагрузку и потери в элементах схемы.

Почему то бытует мнение, что из электрического резонанса возможно получение «дополнительной», или «свободной» энергии, что для этого в контуре достаточно поддерживать резонанс. Выше описанные процессы, происходящие в электрическом резонансном контуре, полностью это опровергают, доказывая черезпериодное накопление энергии.

В интернете была статья, про то, что на каком-то заводе, какой-то электрик начитался статей про резонанс, и доработав понижающие трансформаторы на заводе снизил потребление энергии заводом на целый порядок.

Для учёта расхода энергии бывают счётчики активной энергии, которые стоят у нас в домах, и счётчики реактивной энергии, которые устанавливают на заводах. В чём разница? На предприятиях, как правило, имеется большое количество оборудования и станков, работающих на трёхфазных двигателях. Двигатель – это индуктивность, а наличие мощного двигателя подразумевает огромные токи. Для равномерности нагрузки мощных двигателей на трёхфазную сеть в каждый временной момент трёхфазного напряжения, в цепи питания устанавливают конденсаторы, которые совместно с обмотками двигателя образуют колебательные контура. Действие этих конденсаторов такое же, как было описано на участках А и В – во время действия сразу двух токов – тока источника питания и контурного тока. Счётчики активной энергии построены так, что заранее накопленная у потребителя энергия вносит ошибку в измерение. Как правило, это связано с «неправильным» подмагничиванием «токовой катушки». Счётчики активной энергии показывают энергию, расходованную двигателями, использующими «блоки конденсаторов», где то на одну треть меньше реально расходованной энергии. А вот счётчики реактивной энергии отлично с этим справляются. Этот «горе-электрик» не мог сделать никакой резонанс, хотя бы потому, что нагрузка потребителей на заводе в разгар дня – стабильна, а утром, в обед и вечером — величина не постоянная и скачет в широких пределах. Как было описано в этой статье, сопротивление нагрузки сильно влияет на выходную амплитуду резонансного контура. Стоило, кому ни будь на заводе, перед обеденным перерывом выключить мощный станок, то напряжение подскочило — бы и сожгло пару других станков, которые ещё не успели выключить другие рабочие. Я предполагаю, что он «химичил» со счётчиками, за что и был уволен.

В заключении статьи, хочу добавить для тех посетителей сайта, кто плохо учился в школе и поэтому в силу своего невежества искренне верит волшебникам:

Закон сохранения энергии никто не отменял! Вечного двигателя основанного на резонансе не бывает, и не может быть! При работе колебательного контура, происходит черезпериодное накопление энергии источника тока, поэтому в результате накопления, в определённый момент времени энергия контура может превышать подводимую к нему энергию. Энергия из «пустоты» не может появиться. «Свободная энергия» — это миф, порождённый малограмотными людьми, для людей себе подобных. Энергия присутствует во всём, что нас окружает, её только нужно правильно извлечь. Это различные химические соединения и элементы, природные явления, но не «Чудо», подобное тому, которое приписывают Тесле! И чем глупее сам «приписчик», тем «чуднее» в его голове выглядит этот выдающийся учёный. В помощь к получению энергии можно привлечь и электрический резонанс, но как вспомогательное явление, помогающее влиять на изменения свойств материалов. Не забивайте себе голову антинаучными идеями! Все, ныне существующие физические законы, никто в ближайшее время не опровергал, их только дополняли и корректировали, что с развитием техники было и всегда будет. Меньше обращайте внимание на малограмотные высказывания людей завлекающих к себе выдуманной сенсацией. Не верьте во всю чепуху, а сначала проводите анализ того, что написано в различных статьях, и что Вам излагают различные средства массовой информации.

Под термином «магнитный резонанс» понимается избирательное (резонансное) поглощение энергии переменного электромагнитного поля электронной или ядерной подсистемой вещества, подверженного действию постоянного магнитного поля. Механизм поглощения связан с квантовыми переходами в этих подсистемах между дискретными уровнями энергии, возникающими в присутствии магнитного поля.

Магнитные резонансы подразделяются обычно на пять видов: 1)циклотронный резонанс (ЦР); 2) электронный парамагнитный резонанс (ЭПР); 3) ядерный магнитный резонанс (ЯМР); 4) электронный ферромагнитный резонанс; 5) электронный антиферромагнитный резонанс.

Циклотронный резонанс . При ЦР наблюдается избирательное поглощение энергии электромагнитного поля в полупроводниках и металлах, находящихся в постоянном магнитном поле, обусловленное квантовыми переходами электронов между энергетическими уровнями Ландау. На такие эквидистантные уровни расщепляется квазинепрерывный энергетический спектр электронов проводимости во внешнем магнитном поле.

Суть физического механизма ЦР можно понять и в рамках классической теории. Свободный электрон движется в постоянном магнитном поле (направленном вдоль оси ) по спиральной траектории вокруг линий магнитной индукции с циклотронной частотой

где и - соответственно величина заряда и эффективная масса электрона. Включим теперь радиочастотное поле с частотой и с вектором перпендикулярным к (например, вдоль оси ). Если электрон имеет подходящую фазу своего движения по спирали, то, поскольку частота его вращения совпадает с частотой внешнего поля, он будет ускоряться, и спираль будет расширяться. Ускорение электрона означает увеличение его энергии, которое происходит за счет передачи ее от радиочастотного поля. Таким образом, резонансное поглощение возможно при выполнении следующих условий:

частота внешнего электромагнитного поля, энергия которого поглощается, должна совпадать с циклотронной частотой электронов ;

вектор напряженности электрического поля электромагнитной волны должен иметь компоненту, нормальную к направлению постоянного магнитного поля ;

среднее время свободного пробега электронов в кристалле должно превышать период циклотронных колебаний .

Метод ЦР используется для определения эффективной массы носителей в полупроводниках. По полуширине линии ЦР можно определить характерные времена рассеяния, и, тем самым, установить подвижность носителей. По площади линии можно установить концентрацию носителей заряда в образце.

Электронный парамагнитный резонанс . Явление ЭПР заключается в резонансном поглощении энергии электромагнитного поля в парамагнитных образцах, помещенных в постоянное магнитное поле , нормальное к магнитному вектору электромагнитного поля. Физическая сущность явления заключается в следующем.


Магнитный момент атома, имеющего неспаренные электроны, определяется выражением (5.35). В магнитном поле энергетические уровни атома благодаря взаимодействию магнитного момента с магнитным полем расщепляются на подуровни с энергией

где представляет собой магнитное квантовое число атома и принимает значение

Из (5.52) видно, что число подуровней равно , а расстояние между подуровнями составляет

Переходы атомов с низких на более высокие уровни могут происходить под действием внешнего электромагнитного поля. Согласно квантовомеханическим правилам отбора разрешенными переходами являются такие, при которых магнитное квантовое число изменяется на единицу, то есть . Следовательно, квант энергии такого поля должен равняться расстоянию между подуровнями

Соотношение (5.55) является условием ЭПР. Переменное магнитное поле резонансной частоты с одинаковой вероятностью будет вызывать переходы с нижних магнитных подуровней на верхние (поглощение) и наоборот (излучение). В состоянии термодинамического равновесия связь между заселенностями и двух соседних уровней определяется законом Больцмана

Из (5.56) видно, что состояния с более низкой энергией имеют большую населенность (). Поэтому число атомов, поглощающих кванты электромагнитного поля, в этих условиях будет преобладать над числом излучающих атомов; в итоге система будет поглощать энергию электромагнитного поля, что приводит к росту . Однако благодаря взаимодействию с решеткой поглощаемая энергия в виде тепла передается решетке, и обычно настолько быстро, что при используемых частотах отношение очень слабо отличается от своего равновесного значения (5.56).

Частоты ЭПР могут быть определены из (5.55). Подставляя значение и считая (чисто спиновый момент), получим для резонансной частоты

Из (5.57) видно, что в полях от до 1 Тл резонансные частоты лежат в интервале Гц, то есть в радиочастотной и СВЧ областях.

Условие резонанса (5.55) относится к изолированным атомам, обладающими магнитными моментами. Однако оно остается справедливым и для системы атомов, если взаимодействие между магнитными моментами пренебрежимо мало. Такой системой является кристалл парамагнетика, в котором магнитные атомы находятся на больших расстояниях один от другого.

Явление ЭПР было предсказано в 1923г. Я.Г.Дорфманом и экспериментально обнаружено в 1944 р. Е.К.Завойским. В настоящее время ЭПР используется как один из самых мощных методов изучения твердого тела. На основе интерпретации спектров ЭПР получают информацию о дефектах, примесях в твердых телах и электронной структуре, о механизмах химических реакций и т.д. На явлении ЭПР построены парамагнитные усилители и генераторы.

Ядерный магнитный резонанс . Тяжелые элементарные частицы - протоны и нейтроны (нуклоны), а, следовательно, построенные из них атомные ядра обладают собственными магнитными моментами, которые служат источником ядерного магнетизма. Роль элементарного магнитного момента по аналогии с электроном здесь играет ядерный магнетон Бора

Атомное ядро обладает магнитным моментом

где – -фактор ядра, – спиновое число ядра, которое принимает полуцелые и целые значения:

0, 1/2, 1, 3/2, 2, ... . (5.60)

Проекция ядерного магнитного момента на ось z произвольно выбранной системы координат определяется соотношением

Здесь магнитное квантовое число при известном принимает значений:

В отсутствие внешнего магнитного поля все состояния с различными имеют одинаковую энергию, следовательно, являются вырожденными. Атомное ядро с отличным от нуля магнитным моментом, помещенное во внешнее постоянное магнитное поле , испытывает пространственное квантование, и его -кратно вырожденный уровень расщепляется в зеемановский мультиплет, уровни которого обладают энергиями

Если после этого на ядро воздействовать переменным полем, квант энергии которого равен расстоянию между уровнями (5.63)

то возникает резонансное поглощение энергии атомными ядрами, которое называется ядерным парамагнитным резонансом или просто ядерным магнитным резонансом .

В силу того, что много меньше , резонансная частота ЯМР заметно меньше частоты ЭПР. Так ЯМР в полях порядка 1 Тл наблюдается в области радиочастот.

ЯМР как метод исследования ядер, атомов и молекул получил разнообразные применения в физике, химии, биологии, медицине, технике, в частности, для измерения напряженности магнитных полей.

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и, как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот. Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии, основанной на фурье-преобразованиях полученного сигнала.

В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) заключается в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В методах ЯМР-интроскопии магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

Ферро- и антиферромагнитный резонанс . Физическая сущность ферромагнитного резонанса заключается в том, что под действием внешнего магнитного поля , намагничивающего ферромагнетик до насыщения, полный магнитный момент образца начинает прецессировать вокруг этого поля с ларморовой частотой , зависящей от поля. Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное , и изменять его частоту , то при наступает резонансное поглощение энергии поля. Поглощение при этом на несколько порядков выше, чем при парамагнитном резонансе, потому что магнитная восприимчивость, а, следовательно, и магнитный момент насыщения в них много выше, чем у парамагнетиков.

Особенности резонансных явлений в ферро- и антиферромагнетиках определяются в первую очередь тем, что в таких веществах имеют дело не с изолированными атомами или сравнительно слабо взаимодействующими ионами обычных парамагнитных тел, а со сложной системой сильно взаимодействующих электронов. Обменное (электростатическое) взаимодействие создает большую результирующую намагниченность, а с ней и большое внутреннее магнитное поле, что существенно изменяет условия резонанса (5.55).

От ЭПР ферромагнитный резонанс отличается тем, что поглощение энергии в этом случае на много порядков сильнее и условие резонанса (связь между резонансной частотой переменного поля и величиной постоянного магнитного поля) существенно зависит от формы образцов.

На явлении ферромагнитного резонанса основаны многие СВЧ-устройства: резонансные вентили и фильтры, парамагнитные усилители, ограничители мощности и линии задержки.

Антиферромагнитный резонанс (электронный магнитный резонанс в антиферромагнетиках ) – явление относительно большого избирательного отклика магнитной системы антиферромагнетика на воздействие электромагнитного поля с частотой (10-1000 ГГц), близкой к собственным частотам прецессии векторов намагниченности магнитных подрешеток системы. Это явление сопровождается сильным поглощением энергии электромагнитного поля.

С квантовой точки зрения антиферромагнитный резонанс можно рассматривать как резонансное превращение фотонов электромагнитного поля в магноны с волновым вектором .

Для наблюдения антиферромагнитного резонанса используются радиоспектрометры, аналогичные применяемым для изучения ЭПР, но позволяющие проводить измерения на высоких (до 1000 ГГц) частотах и в сильных (до 1 МГс) магнитных полях. Наиболее перспективны спектрометры, в которых сканируется не магнитное поле, а частота. Получили распространение оптические методы детектирования антиферромагнитного резонанса .

Принцип вашему вниманию устройство с КПД выше 100%, вы скажете что вот это фейк и все не по настоящему, но это неправда. Собрано устройство на отечественных деталях. В конструкции трансформатора есть одна особенность, трансформатор Ш-образный с зазором по середине, но в зазоре есть неодимовый магнит, который задает начальный импульс на катушку обратной связи. Катушки съема можно мотать в любую сторону, но при этом нужна ювелирная точность в их намотке, они должны иметь одинаковую индуктивность. Если это не соблюсти, то резонанса не будет, об этом вас проинформирует вольтметр, подключенный параллельно к батарейке. Особого применения в данной конструкции я не нашел, но можно подключить источник света в виде ламп накаливания.

Технических характеристики при резонансе:
КПД выше 100%
Обратный ток 163-167 миллиампер (сам не знаю как это так происходит, но батарея заряжается)
Ток потребления 141 миллиампер (получается что 20 миллиампер - это свободная энергия и идет на заряд батареи)

Красный провод катушка L1
Зеленый провод катушка L2
Черный провод это катушки съема

Настройка

На своем опыте убедился, что катушка Л1 намотанная одинаковым проводом, легче настраивается на резонанс с Л2, создавая больший ток чем потребляется. Как я понял создается ферромагнитный резонанс, что питает нагрузку и заряжает батарею большим током. Для настройки резонанса должны быть две одинаковые катушки или одна, при включенном устройстве они двигаются под нагрузкой лампы а виде накаливания (в моем случае лампа 12 Вольт 5 Ватт). Для настройки подключим вольтметр параллельно батарейке и начнем двигать катушки(у). При резонансе, напряжение на батарейке должно начать повышаться. Дойдя до определенного порога, батарейка перестанет заряжаться и разряжаться. На транзистор нужно установить большой радиатор. С случае с двумя катушками все сложнее, так как надо намотать их так, чтобы индуктивности практически не отличались, с разными нагрузками расположение правой и левой катушек будут меняться. Если не соблюсти эти правила настройки, то резонанса может и не произойти, при этом мы получим простой повышающий преобразователь с высоким КПД. Параметры катушек у меня такие 1:3, то есть Л1 8 витков, Л2 24 витка обе с одинаковым сечением провода. Л1 мотается поверх Л2. Съемные катушки без разницы каким проводом, но у меня 1.5мм.

Фото

Готовое устройство в безрезонансном состоянии (катушки подключены последовательно)

Проба самозапитки от съемной катушки через диод. (Результат: неудача, работает 14 секунд с затуханием)

Состояние резонанса на одной катушке без самозапитки через диод. Опыт удачен, с подключенной батарейкой преобразователь проработал 37 часов 40 минут, без потери напряжения на батарейке в начале опыта напряжение батарейки было 7.15 вольт, к концу 7.60 вольт. Данный опыт доказал, что преобразователь способен выдать КПД выше 100%. Для нагрузки использовал лампу накаливания 12 Вольт 5 Ватт. К попытке использовать другие устройства я отказался, так как магнитное поле вокруг устройства очень сильное и создает помехи в радиусе полтора метра, радио перестает работать в радиусе 10 метров.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ819А

1 КТ805 В блокнот
C1 Конденсатор 0.1 мкФ 1 В блокнот
C2 Электролитический конденсатор 50 мкФ 25 в 1 В блокнот
R1 Резистор

2.2 кОм

1 В блокнот
R2 Резистор

62 Ом

1 В блокнот
Bat1 Батарея 12 Вольт 1

БТГ - Бестопливный (безтопливный) генератор - это сверхэффективный генератор энергии, не требующий для своей работы сжигаемое топливо - это энергетически открытое устройство, которое по определению не может являться закрытой механической и термодинамической системой.

Принцип полезной работы БТГ связан в первую очередь с преобразованием низкоуровневой (напр. тепловой) энергии эфира в полезную механическую и в электрическую энергию . Поскольку работа БТГ направлена на захват свободных энергий в окружающем пространстве (заполненном газом - эфиром), то и закон сохранения энергии для замкнутых систем не имеет к работе БТГ прямого отношения.

Альтернативные термины

Классы устройств бестопливных генераторов

Внимание! Факультативный раздел Данный раздел может содержать спорные материалы

Виды бестопливных генераторов

На сегодняшний день БТГ делятся виды, которые опираются на следующие физические явления:

  1. Эфиромагнитного резонанса - большая группа генераторов энергии эфира использует энергию магнитного резонанса.
  2. Механического резонанса - это генераторы энергии, преобразованной из механического резонанса.
  3. Гравитационные - генераторы использующие силу гравитации, притяжение тел к поверхности планеты в результате воздействия на них потока поглощаемого планетой эфира, известны еще с давних времен, еще в средние века были созданы рабочие прототипы.
  4. Инерционные - это генераторы, использующие явление инерции, возникающей при равноускоренном или равнозамедленном движении материального тела, обусловленное плотностью эфира заполняющего пространство.
  5. Центробежные - большая группа генераторов, использующих реактивный момент, образующийся после вылета струи жидкости из сопла ротора устройства под действием центробежной силы.
  6. Магнитные - это многочисленная группа на постоянных и электрических магнитах, преобразующая магнитный поток в механическое движение или в движение тока.
  7. Статического заряда - это генераторы энергии, накапливающие электростатическую энергию

Виды конструкций бестопливных генераторов

  • Генераторы с преобразованием напряжения , когда полученная энергия преобразуется в постоянный ток, который идет на запитку блока питания устройства. Генераторы с преобразованием напряжения сложнее в производстве, но более легкие в настройке.
  • Генераторы с обратной связью , когда часть полученной энергии направляется на вход устройства, а блок питания, после возбуждения устройства, не задействуется. Генераторы с обратной связью легче в изготовлении, но сложны в настройке.

✅Комментарии читателей

Анонимные отзывы

Вырази своё мнение! Это бесплатно, безопасно, без регистрации и рекламы.

Похожие публикации